Estimation of Optimum Dilution in the GMAW Process Using Integrated ANN-GA
No Thumbnail Available
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi Ltd., Adam House
Abstract
To improve the corrosion resistant properties of carbon steel, usually cladding process is used. It is a process of depositing a thick layer of corrosion resistant material over carbon steel plate. Most of the engineering applications require high strength and corrosion resistant materials for long-term reliability and performance. By cladding these properties can be achieved with minimum cost. The main problem faced on cladding is the selection of optimum combinations of process parameters for achieving quality clad and hence good clad bead geometry. This paper highlights an experimental study to optimize various input process parameters (welding current, welding speed, gun angle, and contact tip to work distance and pinch) to get optimum dilution in stainless steel cladding of low carbon structural steel plates using gas metal arc welding (GMAW). Experiments were conducted based on central composite rotatable design with full replication technique, and mathematical models were developed using multiple regression method. The developed models have been checked for adequacy and significance. In this study, artificial neural network (ANN) and genetic algorithm (GA) techniques were integrated and labeled as integrated ANN-GA to estimate optimal process parameters in GMAW to get optimum dilution.
Description
Keywords
Chemical Engineering and Technology